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In addition, it is shown that the existence of a stabilizing constant feed-
back gain and the reliability of its implementation is equivalent to the con-
vergence properties of a set of coupled Riccati-like matrix difference equationl

In sununary, these results can be used for off—line studies relating the
open loop dyn~amics, required performance , actuator mean time to failure ,
and functional or identical actuator redundancy, with and without feedback gain
reconfiguration strategies~~~
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(Proceeding of IEEE Conference on Decision and Control , San Diego, l97L)

c. PZLIASLH CCIITmoL SYSTVI DZSI~~IS WITH AND WITHOUT F~~~ BACE RECOIIFI~~JMTZ0WS *

1. D. lirdwell 0. A. Castanon and 14. Athans
Ferris 308 8oo 35—308
D.partu.n t of Electri cal zrqinesr ing Laboratory for Information and Decision Systems
Ths Dniversity of Tenn.ss.e Massachusetts Institute of Technology
Xnoxvilie, III 37916 Cambridge, MA 02139

Abstract lasically, the reliability of a system is the
probability that the system will perform according

This paper contains an overview of a theoretic- to specifications for a given ~~ unt of tine . In
al, framework for the design of reliable multivariable a system—theoretic contsxt , the specification which
control syst , with special ~~~hasj s on actuator a system moat meet i.e stability; also, since, at
failures and necessa ry actuator redundancy levels. Least for most math~~~tica.l models of systems, eta-
Using a 1in~a.. model of the system, with Markovian bility is a long-term attribute of the system, the
failure probabilities end quadratic performance in— amount of ties for which the system most remain
den, an optimal stochastic control problem ii posed stable i.e taken to be infinite. There fore, the
and solved. Tb. solution requires the iterati on of following definitions of system reliability are
a set of highly coupled Riccati-liks matrix differ- used in this pape rs
ence equations , if these converge one has a reli- Definition 1* A system (ieplyinq the hardwar, con-able design ; if they diverge, the design is unrs—
liable, and the system design cannot be stabiTTh~ed. fj g~~~ti0n, or mathematical model of that configu-

ration, and its associated control and estimationZn addition , it is shown that the existence of str ucture ) has reliabi lity r where r is the proba—a stabilizing constant feedback gain end the reli— bility that the system will be stable for all time.ability of its ispls.entaticn is equivalent to the
convergence properties of a set of coupled liccati- Defipitice 2 s A systs. is said to be reliable if
like matrix difference equations . r — a.

In si ery , thee, results can be used for off—
Definition 3s A syst design, or configuration,line studies relating the open loop dynamics , re-

quired performance, actuator mean tins to failure , is reliabl, if it is etabilizable with probability
and functional or identical actuator redundancy , on.
with and without feedback gain reconfiguration These definitions of reliability depend on the de—
strategies. finition of stability, and for systems which can

have more than one mode of operation, stability is
1. Introduction not that easy to det.rmin.. In this paper, stabi-

lity will mean either an—square stability (over
This paper is an overview of a research effort some rando. space which will be left unspecified

which addresses some of the current problems in inter- for the moment) , or cost-stability (aga in, an ex—
facing systams theory and reliability, and puts this pectat.ion over a certain random specs) , which is
research In perspective with the open questions in basically the property that the acc~~~lat.d colt
this field. Reliability is a relative concept , it of system operation is bounded with probability
is, roughly, the probability that a system will per- one. (The 4sf init.ion of cost is also deferred.)
form according to specifications for a given amount The reliability of a cyst,. will depend on
of time. The motivating question behind this report the reliabilities of its various c~~~cnents and on
las What constitutes a rallabla system? their Interconnections. Thus , the syst~~~ engineer

If a theory were available which aJ1~~~d a cc.- most have an understanding of the probabilistic me—
parison between alternate designs, based cc both the c$tqn.i~~~ of ~~~~~~~~~ failure , repair , and system
espected system reliability and the espected system reconfiguration.
perf~~~~~~e, it would greatly siepl,Lfy the current Cosponent fail ures, repairs, and reconfiqura.
design methodology. It Is untor~~~ate that at pro— tiass are modeled In this paper by a Narkov chain.
sent there is no accepted ethodolegy for a determia- ~~.Ly catastrophic changes in the system structure
ation of espected system perf~~~—~~ Which accounts are considered , degradations ax. not modeled. The
for changes in the performs_see characteristics due hasard rate is ass~~~d to be constant, resulting in
to failure, repair or reconliquratics of system func— an eapuneatial failure distribution. In the dii—
tions. This report presents such a methodology for crete—ties case , to which this paper is confined
a specific class of linear systs with quadratic exclusively, the hazard rate becomes the prabebili-
cost crit.ria. ty of failure (or rupeix or reconfiguration) be—

~~~en time t and tins til.
?his research was supported by the Fannie and .7oba It is ,~~~ necessary to define precisely the
lsrts foundation, I~ 8A ~~ s grant WGX.—23-OQI- j 24, modes of operation and their dynamic transitions.
and Afosi grant 77—3281. The work was perfo~~~d The terms system configuration and systes structure
while .7. D. Iizdusll was a graduate student at will be used.
LI.?.
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Definition 4i System Structure A possible mode not exist, then the system design cannot be etabil-
of operation for a given system, the components, ized, hence , it ii unreliable. The only recourse
their interconnections , end the information flow in such a case is to use more reliable components
in the system at a time. and/or more redundancy . Reliability of a system
Definition S System configuration s The original design can the refore be determined by a tact for
design of the system , accounting for all modeled convergence of the set of coupled Riccst.i-like

~~~eu of operation, and the Markov chain g vezninq equation as the final time goes to infinity.
the configuration , or structural, dynamics transi- The second major contribution lies in the ro—
tions among the various struct ur es). In this pa— bustn ess Implications . Precisely, a consta nt gain
per , structures are referenced by convention by for a linear feedback control law for a set of li-
the set of non-negative integers near systems is said to be robust if that gain

stabi lizes each linear system individually , i. e . ,
I ~ {04, 2 ,3 , . .  . ,L} (1.1) without regard to the configuration dynamics. The

An important question in reliabili ty is the problem of determining when such a gain exists .
effect of red”—d.ncy on system performance. Zn and of finding a robust gain , can be formolatad in
other words , how should the allocation of ~~~~~~~ 

the context of thie research . As a result, this
resources be allocated to the redundant c~~~onsnts, methodo logy gives an algorithe for datereining a
and how should the component reliabilities affect robust gain for a set of linear systems which is
the choice of an optimal control law? The control optimal with respect to a quadratic cost criterion .
methodologies presented in this paper answer the If the algorithe does not converge, then no robust
question for a specific class system configurations. gain exists.
They yield a quantitative analysis of the effec- For the purpoe e of brevity, most result will
tiveness of a given system design , where efl~~~tve- be stated with out proof. The reader say find these
ness is a quant ity relating both the perfo rmance proofs in reference (123 , and in the papers
and the reliability of a configuration design . currently in preparation.

Previously, several authors have studied the
optimal control of systems with raii~em1y varying 2. Problem Statement
structure. Most notable among these is Wonham (11 ,
where the solution to the continuous tine linear Consider the system
regulator problem with randomly ju mping parameters X~~f1 — Ax t + ~~~ ~~~ 

(2. 1)
is dsvsloped. This solution is sin_Liar to the dis-
crete tine switching gain solution pre sented in
Section 3. Ilonham also proves an existence result a R~ (2.2)
for the steady—state optimal solution to the con— 

~ ~ (2 .3)tool of systems with r-~~~~’y varying structures
however , the conclusion is only sufficient s it is ~ c Jt~~~

0 ( 2.4)
not necessary. Similar results were obas~~,d in
leard (21 for the existence of a stabilizing gain, end, for each Ii, an element of an indexing set I
where the structures were of a highly specific form, ii C I — (0,1,2, . . . ,L} (2.5)
these results were necessary and sufficient alge-
braic conditions , but cannot be readily generalized ik £ R’~ 

X5 (2.6)
to lass specific classes of syut . additional where
work on the control problem for this class of sys-
tems has been done by Sworder (3 1, Rather S laen— iii ~ ~ij ) 

t e l  (2.7 )
berger (41 , lar—Whalem a Sivan (51 , Willsisr (61 The index k(t ) is a random variable taking values in
and Pierce & Sworder (73 . The dual problem of I which is governed by a Morkov chain and
state estimation with a system with random paz~~~—
tar variations over a finite set was studied in !t+l - (2.6)

~ tang 4 Athens ($3 .
Recently, the robusteess of the ‘4-a qua- !.t t 1L+1 (2 .9)

dratic regulator has been studied by Mong,
(93 and Safonow & Athena (101. Section 6 oP~tb2~ 

where w1,~ is the Probability of k(t )  i, given no

paper gives necessary and sufficient conditions on-Un. information about Ii Ct) , and is the init-
for the existence of a robust Linear constant gain tal. distrihetion over I.
control law for a specific class of ~~~~~~ 

It is assun.d that the following sequence of
j 1~~~ of the pralinisazy results on Which this •VSflt5 occur at each time ti

r research was based were presented inI form at the 1977 Joint AUt~~~tio ~~~~~~~~~~~~~~~ 
1) is observed emactly

I coo, in San francisco by Iir~~~l1, and published 2) 
~~~~ tk( t 4 )  ~~~~~~~ tO 1k(t )I for the 1977 Conference on Decision and Con— 3) 
~~~~ 

is applied .
tool Th

f
~P5Y in Rev Orleans by $ir~~~l1 I Athens

~i (UI . ThiS p~~tr is based on the resu lts in Consider the structure ~~ (I J~} ~~~ indexed by

\ lirdwe (labJ I. Define the structural tralectopy E~ to be a se-
there are two major contributions of this re-

search. first , the classification of a system de- quence of ele sats k(t )  in I Which select a specific
sign as reliable or unreliable has been equated ~~~ “°~“ ‘ ~~k(t ) at tinS t~
with the exi stence of a steady—state switching ;q, • ( k ( O ) , k ( l ) , . . . , k ( t — 1 ) )  (2.10)
gain and cost far that design. If this gain does T~e structural trajectory I? is a random variable

78 12 21 1i~
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with probability of occ*arance generated from the that k(t- l) is he~~~ , since thi s is the cas. with
Narko, equation (2.8) . probability on.. • Thus, thu solution will be Ia—

baled the swttc ~inq ~~~~~ solutian, since , for eachT-l
tim. t , L+l optimal solutions are calcula ted ap r ior i,p ()  - ~ (2.11) 
and one solution ii chosen on-line for each time t,
based on th. past measurements 

~~t
’ £~ _~ ~~~where the control interval is

which yield perfect koowladqe at Ii Ct-)).
(2.12 ) Dynamic progr ing is used to derive the op—

for the finite time problem with terminal time ~. timal switching gain solution. It has been proved
Then for a given state and control traj ectory (123 that at each tine t, the optimal expected

cost—to—go , given the system structure k Ct-lI , is

generated by (2.1) and i~~frOs a us ~~~~~~~~~~~ ~~~~~~~~~~~~ 
( 3.2)

where the S are determined by a set of L+lquenc. of controls 
~~~ 

)~~~ the cost index is to 
coupled Pi~~~~l— 1ike sations (one for each possi-

be the standard quadratic cost crit er ion ble configuration) ,

( L
— I x T~~x + 

~~? ~~~ — I 9ik ~~i,t+ L— —t t—0 ~_0~~~t ( t 0
(2.13) I I. 

~
t+l
~~I 

I. —
The objective is to choose a ~~~~~~~~ control - I I Pa, !. I& + Ilaw, which nay depend on any past thfozm.tion about L i o  L i—o

* or ~ , mapping into 
L.—t t

(2. 14) . F 
~ 

Pii !~ Li.t.i]~ ~~~~~ (3 .3 )
Li-c

* (2.15) The optimal control, given k (t— l) — k, is

such that the expected valu, of the cost function a f
fro, equation (2.13) 

~ k.t 
- 9ib!j!i,t+i.!i—0 tj

— (2.16) 
• 

~~~~ ~~~~~~~~~~~~~~~~~~ 
(3. 4)a

is minimized over all possible meppings ~~~ at 
~~~
.

3. The Optimal Solution writing
*u • G  z c3.s )Normally, a control law of the form (2.15) —k, t  — k . t — t

most provide both a control and an estimation
function in this type of problem, hence the label than

problem allows the exact determination of k(t -l) — 
+ 1 !~ !i,t+l !iJ -l~ 6L control is used . Rex.. the struc tu re of h- 

k,t — — [ ~i—c
~~° !t ’ ~~t-l for almost ~~~ values of

I.This result is stat d in the following 1 a  z ~ ~~~ L±,~+1~ 
(3.6)

~~~~~ 1 (12 12 for the set {!IJ k C I ’  Whaze the i—i
C 

•
~~~ ~~~~~~~~~ svit hiro 

~~~~ ‘
~~
-

~~~
-5 are distinct , the set 

on k(t- 1) . The var iable
- 1

~~t 
+ has distinct ~~~~~‘s k(t-1) is dst—’ 4-.of by

for almost all valueu of k(t—1) • I. Lit 
~~~~ ~~~t-l4 

~~~~~~~
~~~orinq the set of controls of measure asro

for Which -~- ~~~~~ of Note that the $ ‘s and the optimal gains

& ~~~~~~~~ 
be ooucstit’t off-Lies and etoc.d. Then

kluO (3.1) at each tim t, the proper gain is selected
~~~~~ from k(t-U , using equation (3.7) , as La

axe met distinct , then for (almost ) any control s ign_re 1.
which the optimal algorithe selects , the resulting This solution is quite complex relative to
state a can be compared with the m~~~ers of ths the structu re of the usual 1’—ez quadratic sole—
sat (3 1)’1!or en exact match (of Which there is tics. Saab of the Ricoati-hibe equations (3.7)
only one with probability U ,  and k( t) is identi- involves the ems comp lexity as the Siccat & equa-
fled as the generator of that matching ~~~er tics for the Linear quadratic solution. In Mdi-

tics, there is the on-Uns ~~~ 1exity arising
Since perfect identification is the best any from the 5mpl staticn of gain scheduling. In

~nai __ Sectics 4, a non-switching gain solution will beaØont
It • ~~~~~~~ s~~~~~~~d with the asa~~~tion presented which has an identical cm-line stru_r-

- -J
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tore to that of the linear quadratic solution, but end the set of initial conditions x • The re-
has similar off-Line c~~~utational complexity to suiting control law will be a non-s~&tching law,
that of the swit~h4.sg gain solution. gl*_is non— using gains determined epriori . 

* a
switching gain solution is subcptinal , but requires Thus , the cptimal~oo.troh Law -
less on-line c~~~lexj .ty. 

______should 4-~1~~ ze the cost

.4 *().r~~
1r

0 J

r T-l
~~~~~~~~~~~~~~~~~~~~~~~~~~

. ,  

- n i  I[ t~O ( 4 3 )
• over the set of admissible controls .

Since the structure of u • G a is fixed,
the problem is equivalent to~~~ - 4 4 tti~zt~, in en
open—Loop sense, the cost function

r f—b

~~ 
!o 1 n [j ~, ~~~~~~~~~~~~~~

• • 4211 I~~oj 
(4.4)

- with respect to the gain matrix ~ , t 0,l,.. .,T-i.
- — TM matrix ~~~-4~~~~ principle o~ Athans(l3 1 is

used to det 4,le the necessary coaditians for the
existence of u’ (or equivalently. G ) .  Let thefigure 1 • The switching gain control lee’ initial stat.~~ be a zero seen ran~Rom variable
which is indepj lent of any structure. Let

A steady-state solution to equatio n (3.7) nay
exist, but the conditions for its existence 

~~~~ ~‘Ao4I!~o~ — ZI!O41
unknown. The steady—state solution would have the
advantage that only one set of gains need be stored be the covsriance matrix of a
on-Line, instead of requiring a set of gains to be Defining the oovarianoe of as
stored for each tine t. since the steady—state 

~~~ II,~ 1 (4 .6)solution is simply the value to which equation (3.7) 1~converges as it is iterated b — ~—erd in time, at
preeemt. the equations can be iterated nme.ricaliy and if wo define
until either they converge or meet some test of
non—convergence. The possibility of limit cycle £j ,~~ 

— ‘~~4 k (t - J )wi , T 0 1 (4.7)
solutions in the swit~~~ ~~ gain a...e tations is
excluded by the following l~~~~i then the matrix can be defined recursively as
t a  2 (1.21 * If the optimaL espected cost-to-ga
at time t is bocmd.d for ali t, then equation (3.7 ) 

~converges.
The existence of a steady-state solution to for t >  1. (4.5)

~~~ switching gain problem estabi i.h~ ~ division
of system designs into those which are inherently
reliable and those which are unreliable. rye, 1j,i~~~~~j 1o~~ o ~‘tj bo~~ (4.9)

though conditions to test for the existence Of the and the relationsteady-state solution axe unavailable, softosrs
can be used with itsxaticn for the test. I.

4. The Non—switching Gain Solution ~ 
• t ) 0  (4.10)

La c~~icus from direst calculation.Zn this Section, the pa~~ieaible controls are
restricted to be of the linear fe,~~~~~ f~~~ ~~~~~ rfr~ At this stags an equivalent de’—’~~-4 -tic

problem ProbLem 12) will be defined with state
1t it1t (4.1) -

____ 

t ) O e n d stata L a tt 0 .  The
whets the ~~ 4- matrix G , ~L restricted ~~ a ~~~~~i~~~~uIItcs are then 4sf tnJ ~ equations
function ~~~~ of time ar~ the initia l ocndit4~~ u, (4.S) end (4.9) .
i.e., it cannsrd~~~~d~~~ Tor  1! • The cb~e.tive
is to T~~~tge over t e~~e~~~Ta~ &ssthL. controls Definition (P~~~le~ AZ) . for the system with
the espectation of (2.13) where the expectation is matri x state (~ )& for t > 0  and 

~~, 
foe t-O

taken over the set of possible structural ~~~~~~ with dye ical ~~%&t&~~s (4.5) and (4A~ end
tories matrix control ~ ~~~~~~ the equivalent deter-

I
ministic cost ow~~ (j~ ~~~~1 (4.2) 

~~~~~~~~~~~~~~~~~
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(A
h i k4G !i~~s $ G

i—a 
~1—1

— 
j~~ 

trcIt (2+a ~!~ t)1 + tr (1121 (4.11) + A TS
1 ~~~~~~~~~~~~~~~~~~~ (4.17)

Note that since the expectation in equation (4.4) This equation is well-defined for any sequence
is over all structural trajectories and the ini- (G } 1-1 and t >0.  The cost V of using this ar -tia.L also . br t~rJ ~°sequenc e over the interval (1 2 , . . .  ,T} is

given by
1 ~~T .1.2)

Tb. sywhal .7, will be used exclusively in the fu- V((G~ ~~~~ — tr 
~ ~~~ 

!i,l &i.l }tore • The one—stag e, or instantaneous, cost at
tins t is

Define

~ ~~t i~.o ) T1i,i~~’t i~~o ’ ‘ 2 4 A ~~Problem is c~~~letely deterministic in the i—o
state (~~ ~ ~~~~ 

• and control G~~. (4.19 )
At this point, the .in(~~4 ‘-tion is dec~~~osed Then the cost of a given se~~e.ce (j  1-1 ofinto two parts using the Principle of Opt.tmelity Length I over the interval tO . 1..... ~r}t!2

(141. The first minimization is over the interval
(1,2,... ,1— t}, and for this the matrix minin — tr(~~0~~~ 

(
~o ~~ ‘ “‘1r-~ ~ (4.20)

princi ple will be used. The result ing solution
from the Remiltonian 4 ( 4  

~~tion necessary condi-depends in general an the choice of ~nd on the 
tioninitial conditions 

~~~ 
~~Let V (~ ) be the optimal coat resulting , w— - o (4.21)from the use and the optimal sequence 

~~1
, —t

for th. intervaL (1,2,... ,T}. the following relation between I i,t ’~~j , t+1 ’ ~~~
The second .i~

(
~ 4aa tion is then over G 0 of the cost 1t ~~ obtained .

J1 tr(I0 (& + G ~~R~~ 0 )j  + V ’(G 0 ) (4.14) 
~~~~!it iLv~_ 1~,t

The Principle of Optimality states that these
minimizations result in the — ‘—~ —~ ‘ing sequence 

~ 
~~ .1+11 ~ 

+ ~ T 
~(G )~~~ for Problem AZ. j—o i— t  — j  3,t+

From (Athens , 13) , the Nsmiltcnian for the aim-
inizatico over (1,2.. . .  ,1-1} is 7.

~ ~~ 
ri~~1 

(4.22)
~~~~~~~~~~~~~~~~~~ a~) i—o

I srk, At this point , a two—point boundary value
- tr 

~~ 
Ii.t T2+~~~!at 

problem bas been defined with the constraint (4.22 )
relating equations (4.17) end (4.5) . Equationi-a t-i 
(4.22) is not explicitly solvable for 0 bectuse[

~ ( L  ~ cannot be factored out of the sun~~~er j~ thus

j—o ~~ i~o P
~i

T
i~_1

(W! j it )L j, t it C5~~Ot ho .3554 as a substitution rule in the
othir two equations. At this time, the solution

sexy %onditione for the existence of 0 ’ • the%1t
~~it

)
~~~) 

ii.t+iJ 
of j’e peers intractable. Thus, although neces-

~tii4~~ .4i q gain, have been establt ,keLt they do
for t 5 (1,2,3 , (4.11) not readily allow for the solution of j  , and

& certainly do not ~~~~Lt a closed-form exjrsssios.where the 
~~~~~~ matrix is ~1j. t+l ~~~~~Pros the necessary condition for the acetate, S. Steady-State Non—Switching Gain Solutions

- }!— (4.16) Zn this Section a modified version of Problem
— I., t A is solved which yields a computational .ethodo-

logy for computing the optimal steady—state non—S backward in tins is derived. 
_____t,t *vi’~”4- g gain solutions. It will be established

the propagation of 
— 

that the solution to this modified problem con-
verges to the s limit as the problem in the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  
I
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last Section . which are the limit of these equations , given that
Definition 6. (Stability) 0 is a constant the limiting solution ~ and exist, where ii

satisfiesstabilizing gain if and on.ty if the resulting system
i T — p i r  (5.7)(5.1) — ——
andis mean—square stable s
l i n v  — i i  (5.8)

a st ~~~~ 
—

Definition 7 (Cost-stability) The system (5.1) The following Th.oren yields an explicit
is cost-stable if and only if procedure for the calculation of the steady-state

~~~~ 
- 

nan-switching control law.
Theor ems Define the sequence (G un t—o by the

with probability one. following equations
The infinite-time problem is defined as a 7.

i’~ .~’—tian of 0 (T) — —( ~ + iT !j !j , t+1!j i~~
1—0J — l i a J  (5.2)T 

•~~~ 7 BTS .t+lwhere 3 is the cost function fox the correspond- j O  1t ~~~~
ing finite—time problem. The sequence which for a given terminal time I andso1ve~ t~e infinite—time versions of Pr oblem AZ
is (0 ) when a solution exists. A solution G — Un 0 (1)
vill ’e~ti)~~if there exists a sequence of gains 05t 1~’ ~~~t ( 5.10)
for which the limit in equation (5.2) exists . whereThis definition of the infinite—tin, problem ii
chosen rather than the definition requiring a 

+ 01 R 0
~i~ 4— ~zaticn of the average cost per unit tine ~ 

- 
-
~~~~

— — ‘
~~~

‘~ l~~~~~~ ?~~ T ~~~~
3 0

because there is a direct correlation b.~~~.n 
A + I

—j, t+l — 1 1—ns~
boun ’edn.ss of .7 over all I for a constant se- I I
quince of gains and mean square stabili ty of + 

~~~~!j!j ,t+L ~~ 
+ 

~~~~~~~~~ ~~~~ ~ i~
nst 

f~r k C I
the system (5.1) .

The concepts of stability. cost-stability, 
~~~~~~~~ 

— ~ for ic I (5.12)
and existence of a steady—state solution are
related by the following l a s  (123 ,  (Th. par~~~ter (I) ii suppressed on the right hand

side of equations (5.9 ) and (5.11).)
L. 3: A constant sequence of gains (j )
mean-square stabilizing if and only if the~~

0esists 
Then the following statements are equivalent .

a bound 3’ such that v ~ 
1) The gain sequence (G us 

) __ cost-stabilizes

* — A x  + 3Ls~~~ 4’ Any sequence (~ 3 coet—stabi lises —t+l — —t —k ( t ) — t(5.1) (with pr~~ebiUty cs~~)~~~ iI and only if J( . &
The steady-state solution for Problem AS is 2) II h a  I t S Ii

defined as the limiting solution to equations (4.5) T’~ :s k , t y l — k , t ’
(4.17) and (4.22) at time t, first as yem and then
as b . • if this limit emists. Th steady-state 3) A coat-.tabilisimg gain sequence exists .
values for $,

~~~ 
, and I • when they exist . sa 4) The solution to Problem A, (G

~~~
)
~~_~ 

is cast-
tisfy the f iloJlaq eq~sa1&cnes stabi1I~ 4~~ .

in addition. if

I T~ ~~~~~~~~~~ C~~! ) L .~ Ckl~? 
(5.4) ~~~ •~~~~~for e.1l t (5.1.3)

a t
j  (steady-state ) exists

1i
111 Tj [a..~

Ta2 .  L ~ i~ _ _  them
a

— (5.14 )
The proof can be found in Iir~~~11 (123 . The(5.5) derivation of equations (5.9) , (S.11) and (5.12)

can be found in lird well and Athan (111 and Iirdwea1. 7. 
_ _ _

.2 • i I ~~ £ + I .L 
______ + (123. A forthcoming paper will contain the c~~~1ete

i—a ~~ hereafter be refer.d to as the solutions to Prob~~~
theorem and proof . Equation (S.9) to (5.12) will

~~ 
‘
~ ~~~~ 

I. which is described in ( 123 and is omitted here
due to lack of space. The results of this theorem

_ _  _  -~~~~
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give a direct coaputational proCedure for calcula- k (t )  c Co ,l,2’}
ting the cptimel steady state gain G as the limit
of ga ins 0 • There are some questions as to the The cost to be minimized is
posai i1.t~J’%f limit cycles on the calculation of
0 . Souever , th$ theorem guarantees co.t-stabi- -

~ ~ 
[ I ~~~~~L1~, using 

~~ ns ~ _ O  whenever the system is Lt— o
coet—stabilisabfb. The matrices are given by

-~~~~~ The original problem (Problem A) can be fo;— [0.0 .3679 P — 0. 1. 0.

6. Robustness r2~71829 0.01 
[1. 

0. 0.1

eulated in such a way that the sequence (G us t-a 
— 

0. 0. l.J
will cost-stabilize a set of 14- esr systems with 1. 71028 1.718281different actuator structures individually whenever

— 
[.63212 .63212jsuch a stabilizing or robust gain exists.

Definition 8i A gain G is robust if
0.0 1.718281 11.71828 ~~~~

~~t+L~~ 
( A + I ~~G)x~ (6.1) 

!l [ I !~~ I
is stable for all k. This is the same as requiring 0.0 .63212J 1_ .632 12 0.01
th. matrix (*48 0) to have eigenvaluea inside the Jar these matrices , equations (5. 9 )  end (5.11.)
unit circl, for ~ .1l Ii. converge • giving the following results ,

Corol lary 1: ?or the set of 7.41 system_s r_ 1 089 _ .0O 31

* — ~ ~~~~~ !~~~.e (6.2) ~ ns [-1.028 -.01444 j
~~t.1 —

with 2 , 1112.8 8.992 1
(6.3) 1i v~Si•I I~~ C

IT
1 

— (6.4) 
i O  18.992 6.835]

A brief check will verify that this is indeed a
if a robust gain exists , then (G us 

) (, is a robust gain. The Riccati solutions for this problem
stabilizing sequence for (6.1) for Ii. --~~ if ax.
the gains G us (I) converge , then 0 is a robust [109.8 9.0301 ~hl4.3 6.2851
gain. —as S o

_ i ~~— I— 9.030 6.821] [6.285 6 836
Discussion: With Corollary 1. a specific existence
problem for robust 14”sar gains is solved. Ixis— 114.4 1
tenc. of a robust gain is made equiva. ent to the — 

1.661

~~~stance of a finite cost infinite-tim, solution [11.66 d.849j
to Problem I, which is readily cooputable from The non—switching solution converges for thisequations (5.9) and (5.11) . system, and the three resulting configurations are

stabilized. Ther efore 0 is a robust gain . KadConsider the system whose transitions are 
~~~ solution not conver~si~f~ by Corollary 1. no ro-shown in Figure 2. The configuration dynamics are bust gain would exist . The spriori expected coltmodeled as being in any structural state with equal (before the configuration stats is 3u~awn ) is • givenprobability of occurance initially end r~~ A,i~~g

in that stats forever , this modal ii illustrated
grap~.’~~lly in Figure 2 below. 

— 
.7 -

71345~~cJO 7. Conclusion

Zn conclusion, the unifying concept of this

(~212:)P~ 
report is, I~~at constitutes a reliable control
system, or a reliable design? A em~or connection
was established in this research between the con-
cepts of rel4-abihity and stabii4nb~14ty . Xtsra-

~~~~~~~~~~~~~~ (Z) tive procedures were developed for the determina-
tion of whether or not a given linear system of the
type considered in this report ii reliable, with
respect to both non-switching and switching gain

the tu~~~le. only if the sat of coupled Aiccati-like matrix •

rigor. 2: anrkov transition prob abilities for controller. • a system design is relia ble if and

difference equationa for the switching gain ec u—
Tb. state dynemics are tion converges. In additiá , if the matrix differ—

I ence equati ons converge for the nan—switching gain
L~ + & a C L k(~ )~~~ !t ~~~~~ *2,t l solution , then the ncn—svit—”~—q control ]aw yislde

-~~
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a robust system, if they diverge, no robust gain 12. 1ir~~~ll, 3. 0., “On Reliable Control System
exists . Designs , ” Ra pt. No. ESL-I!—821, Electronic

This paper is an overview of the results in ~ Systems Laboratory , M.I .T. , Cambridge , Ma.
Birdwell (12) . paper, in preparation will con- Nay 1978.
ta in the proofs of the results which are stated
here. 13. Athens, K., “The matrix minin~~ principle ,”

Infer . and Control, vol. 11, pp. 592—606 , 1967.
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